A model for stability of the semi-implicit backward differentiation formulas
نویسنده
چکیده
A model is presented for stability for an extension of linear multistep methods for stiff ordinary differential equations. The method is based on a prediction followed by a fixed number of corrections obtained by a Newton scheme with inexact Jacobian matrix. The impact on stability of error in the matrix over a broad range of linear, constant coefficient equations is modeled. The model provides practical guidance for implementation of software for stiff equations.
منابع مشابه
A hybrid method with optimal stability properties for the numerical solution of stiff differential systems
In this paper, we consider the construction of a new class of numerical methods based on the backward differentiation formulas (BDFs) that be equipped by including two off--step points. We represent these methods from general linear methods (GLMs) point of view which provides an easy process to improve their stability properties and implementation in a variable stepsize mode. These superioritie...
متن کاملAccuracy of Decoupled Implicit Integration Formulas
Dynamical systems can often be decomposed into loosely coupled subsystems. The system of ordinary differential equations (ODEs) modelling such a problem can then be partitioned corresponding to the subsystems, and the loose couplings can be exploited by special integration methods to solve the problem using a parallel computer or just solve the problem more efficiently than by standard methods....
متن کاملDiagonally Implicit Block Backward Differentiation Formulas for Solving Ordinary Differential Equations
This paper focuses on the derivation of diagonally implicit two-point block backward differentiation formulas DI2BBDF for solving first-order initial value problem IVP with two fixed points. The method approximates the solution at two points simultaneously. The implementation and the stability of the proposed method are also discussed. A performance of the DI2BBDF is compared with the existing ...
متن کاملStability of two classes of improved backward Euler methods for stochastic delay differential equations of neutral type
This paper examines stability analysis of two classes of improved backward Euler methods, namely split-step $(theta, lambda)$-backward Euler (SSBE) and semi-implicit $(theta,lambda)$-Euler (SIE) methods, for nonlinear neutral stochastic delay differential equations (NSDDEs). It is proved that the SSBE method with $theta, lambdain(0,1]$ can recover the exponential mean-square stability with some...
متن کاملApplication of the block backward differential formula for numerical solution of Volterra integro-differential equations
In this paper, we consider an implicit block backward differentiation formula (BBDF) for solving Volterra Integro-Differential Equations (VIDEs). The approach given in this paper leads to numerical methods for solving VIDEs which avoid the need for special starting procedures. Convergence order and linear stability properties of the methods are analyzed. Also, methods with extensive stability r...
متن کامل